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ABSTRACT: A method for optimizing reconstruction algorithms 
is presented that is based on how well a specified task can be 
performed using the reconstructed images. Task performance is 
numerically assessed by a Monte Carlo simulation of the complete 
imaging process including the generation of scenes appropriate to 
the desired application, subsequent data taking, reconstruction, 
and performance of the stated task based on the final image. The 
use of this method is demonstrated through the optimization of 
the Algebraic Reconstruction Technique (ART), which 
reconstructs images from their projections by an iterative 
procedure. The optimization is accomplished by varying the 
relaxation factor employed in the updating procedure. In some of 
the imaging situations studied, it is found that the optimization of 
constrained ART, in which a nonnegativity constraint is invoked, 
can vastly increase the detectability of objects. There is little 
improvement attained for unconstrained ART. The general 
method presented may be applied to the problem of designing 
neutron-diffraction spectrometers. 

Introduction 

The overall purpose of an imaging system is to provide information about the 
object or scene being imaged. For mission-oriented imaging systems, the type of 
scenes expected and the kind of information desired can frequently be specified. 
In such a case an imaging system should be optimized on the basis of how well 
the specified tasks can be performed using the resulting images. Here this 
approach to optimization is applied to only one aspect of the complete imaging 
system, that of the image reconstruction algorithm. It is shown that such an 
optimization is distinctly practical and can be extremely beneficial. 

Several classes of measures have been employed in the past on which to 
base the optimization of reconstruction algorithms [l]. Some are based on the 
fidelity of the reconstructed images, such as the conventional measure of the 
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rms difference between the reconstruction and the original image, simply called 
the rms error. Experience teaches us that this does not always seem to be cor- 
related with the usefulness of images. There are alternative measures based on 
how closely the estimated reconstruction reproduces the measurement data, for 
example, the mean-square residual. Unfortunately, without further constraints 
reconstruction based on minimizing the mean-square residual is known to be 
ill-conditioned or even worse, ill-posed [l]. 

In the approach to algorithm optimization presented here, an algorithm is 
rated on the basis of how well one can perform stated tasks using the recon- 

structed images. As shown in Ref. [2], task performance in a well specified 

imaging situation is readily assessed numerically through a Monte Carlo tech- 

nique that is used to simulate the complete imaging process. The optimization 
procedure involves maximizing task performance by varying whatever free pa- 
rameters exist in the reconstruction algorithm. 

This article closely follows one that appeared in conjunction with an SPIE 
conference [3]. The main thrust of the present article is the solution of the 
tomographic reconstruction problem in which a two-dimensional image is to be 
determined from a set of projections (line integrals) taken through it. However, 
the same kind of difficulties that exist in tomographic reconstruction are present 

in other image-recovery problems. That goes for the deblurring of blurred data 
in either one or two dimensions. The technique presented here for evalua- 

tion and optimizaton of a reconstruction algorithm has obvious applications to 

many of the questions that have been posed during this workshop regarding 
the best design of neutron-diffraction spectrometers. It is well to remember 

that the data-collection system includes both the spectrometer design and the 
subsequent data analysis, which includes any deblurring that might be deemed 

necessary. Optimization of the quality of the final data should also include the 
effects of the data processing that may be required for the proper interpretation 
of the data. 

Method to Calculate Task Performance 

For linear imaging systems the effects of image noise on task performance can 
be predicted for a variety of simple tasks [4]. The same cannot be said of the 

effects of artifacts. The masking effects of measurement noise are truly random 
in nature. The random noise process results in each set of measurements being 
different, even when the scene being imaged does not change. However, re- 
construction from limited data typically produces artifacts in the reconstructed 
images that behave differently than the fluctuations arising from random noise. 
They manifest themselves as seemingly unpredictable irregularities that look 
like noise, but in a strict sense, they are not. They are deterministic since they 
can be predicted from the combined knowledge of the measurement geometry, 
the scene, and the reconstruction algorithm. Since these artifacts depend on 
the scene, a single realization of a simple scene is plainly inadequate to judge 
a reconstruction algorithm. It is necessary to obtain a statistically meaningful 
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average of the response of an algorithm to many realizations of the ensemble of 

scenes with which it must cope. 

A Monte Carlo technique, one that employs pseudo-random numbers to 

generate its results, is used to simulate the entire imaging process from scene 

generation to the final task performance, because it can readily provide the 

above variations within the ensemble. 

The method requires first a complete specification of the entire problem in 

the following manner: 

a) Define the class of scenes to be imaged with as much complexity as exists 
in the intended application. 

b) Define the geometry of the measurements. The deficiencies in the mea- 
surements such as blur, uncertainties in the geometry, and uncertainties in the 
measurements (noise) should be specified. 

c) Define clearly the task to be performed. Details concerning what is known 
about the signal and the background must be stated explicitly. 

d) Define the method of task performance. This method should be consistent 

with the intended application and the a priori known information. 

The simulation procedure is then performed by doing the following: 

e) Create a representative scene and the corresponding measurement data 

by means of a Monte Carlo simulation technique. 
f) Reconstruct the scene with the algorithm being tested. 

g) Perform the specified task using the reconstructed image. 
h) Repeat steps e) through g) a sufficient number of times to obtain the 

necessary statistics on the accuracy of the task performance. 
Finally, determine how well the task has been performed: 
i) Evaluate the task performance using the relevant measure of performance. 
The advantage of this numerical approach is that it readily handles complex 

imaging situations, nonstationary imaging characteristics, and nonlinear recon- 
struction algorithms. Its major ‘disadvantage is that it provides an evaluation 
that is valid only for the specific imaging situation investigated. 

ART 

The Algebraic Reconstruction Technique (ART) [5] is an iterative algorithm 
that reconstructs a function from its projections. It has proven to be a very 
successful algorithm in tomographic reconstruction, particularly for estimating 

a function when there is a limited amount of data available. It is identical 

to the Kaczmarz algorithm [6], which provides a pseudoinverse solution to a 

singular system of linear equations [7] and works particularly well when the 
matrix is sparse. Assume that N projection measurements are made of the 
unknown function f, which will be considered a vector. As these measurements 
are linearly related to f, they may be written as 

gi=Hif, i=l,..., N, (1) 
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where gi is the ith measurement and Hi is the corresponding row of the mea- 
surement matrix. The ART algorithm proceeds as follows. An initial guess is 
made, for example, f o = 0. Then the estimate is updated by iterating on the 
individual measurements taken in turn: 

f k+l=fk+XkH~ (2) 

where i = k mod(N)+1 and XL is a relaxation factor for the kth update. 
Any applicable constraints are invoked after each update. For example, for 
constrained ART in which a nonnegativity constraint is enforced, when f k+* < 
0, set f k+l = 0. In the absence of constraints, the normalization of (2) is such 
that when X” = 1, fk+i is guaranteed to satisfy the measurement equation 
(1). In the standard nomenclature one iteration is completed after the full set 
of N measurements has been processed. We use the index K to indicate the 
iteration number (K = int(le/N)). V ariable relaxation (or damping) factors are 
used here to attenuate successive updates during the reconstruction. We will 
express the relaxation factor as 

AK = Xo(TA)K-l. 

The proper choice of the relaxation factor is the issue at hand. There is 
very little guidance on this choice in the literature. It is known [S] that if a 
solution to the measurement equations exists, the ART algorithm will converge 
to it in the limit of an infinite number of iterations provided that 2 > & > 0. 
A value of unity is often suggested. Censor et al. [9] have shown that uncon- 
strained ART ultimately converges to a minimum-norm least-squares solution if 
the relaxation factor approaches zero slowly enough. However, XK will asymp- 
totically approach zero for any value of TX < 1. The value appropriate to a 
finite number of iterations remains uncertain. In previous work the author has 
assumed for J!o and TX the nominal values of 1.0 and 0.8 for problems involving 
a limited number of projections, and 0.2 and 0.8 for problems involving many 
(~100) views [2]. This choice for TX makes the final XK at ten iterations about 
seven times smaller than the initial one X0, In our experience unconstrained 
ART converges reasonably well in ten iterations. Next we discuss a way to find 
the best choice for the relaxation parameters for a given problem. 

Optimization of ART 

The use of numerically calculated task performance will be demonstrated by 
searching for the optimum choice of X0 and TX for the ART algorithm. For the 
present purpose, the class of scenes is assumed to consist of a number of non- 
overlapping discs placed on a zero background. For this example, each scene 
contains 10 high-contrast discs of amplitude 1.0 and 10 low-contrast discs with 
amplitude 0.1. The discs are randomly placed within a circle of reconstruction, 
which has a diameter of 128 pixels in the reconstructed image. The diameter 
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Figure 1: The first randomly generated scene consisting of 10 high-contrast and 

10 low-contrast discs. The evaluation of task performance is based on an average 

over ten similar scenes. 

of each disc is 8 pixels. The first of the series of images generated for these 
tests is shown in Fig. 1. In this computed tomographic (CT) problem, the 
measurements are assumed to consist of a specified number of parallel projec- 
tions, each containing 128 samples. Ten iterations of ART are used in all of 
the present examples. It is assumed that the task to be performed is the detec- 
tion of the low-contrast discs. To produce noisy data, random noise is added 
to the projection measurements using a Gaussian-distributed random number 
generator. 

The result of reconstructing Fig. 1 from 12 noiseless views spanning 180° 
is shown in Fig. 2. The seemingly random fluctuations in the background 
are actually artifacts produced by the limited number of projections and arise 
mainly from the high-contrast discs. As the artifacts depend on the positions of 
the discs, it is important to allow for random placement of the discs to allow for 
the full range of artifacts. It appears that the nonnegativity constraint improves 
the reconstruction considerably in that it has reduced the confusion caused by 
the fluctuations in the background. However, upon careful examination, one 
finds that some of the low-contrast discs have not been reproduced. Also, 
there still remain many fluctuations in the background that may mislead one 
to suspect the presence of discs in places where none exist in reality. Thus, 
on the basis of this single example, one cannot say with certainty whether or 

not the detection of the low-contrast discs is improved by the nonnegativity 
constraint. A statistically significant comparison between reconstructions with 
and without the constraint must be made to assess its value. 

The task to be performed is assumed to be the simple detection of the 
low-contrast discs. It is assumed that the position of a possible disc is known 
beforehand as is the background. To perform the stated task of detection, it is 
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Figure 2: Reconstructions of Fig. 1 from 12 noiseless parallel projections sub- 

tending 180’ obtained with 10 iterations of the ART algorithm (top) without and 

(bottom) with the nonnegativity constraint. These reconstructions were obtained 

with & = 1.0 and TX = 0.8. 
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Figure 3: The frequency distributions of the decision variable (the sum over a cir- 

cular region) evaluated where a low-contrast disc is known to exist (dashed line) 

and where none exists (solid line) for ART reconstructions without the nonnegativ- 

ity constraint. These results summarize the detection performance obtained from 

reconstructions from 12 views for 10 randomly-generated scenes. 

assumed that the sum over the area of the disc provides an appropriate decision 
variable 4. This sum is an approximation to the matched filter, which is known 
to be the optimum decision variable when the image is corrupted by additive 
uncorrelated Gaussian noise [lo]. Ignored is the blurring effects of the finite 
resolution of the discretely-sampled reconstruction. Neither is account taken of 
the known correlation in the noise in CT reconstructions [ll] that have been 
derived from projections containing uncorrelated noise. After reconstruction, 
the sums over each region where the low-contrast objects are known to exist 
are calculated, as well as those over each region where none exist. These two 
data sets may be displayed as histograms in this decision variable as shown in 
Fig. 3. To perform the detection task, a disc will be said to be present at each 
location where the value of the decision variable is above a chosen threshold. 
The degree of separation between these two distributions is often characterized 
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by the detectability index d’, given by 

I (4 

where $1 and ur are the mean and rms deviation of the frequency distribution 
when the object is present and those with the subscript 0 are when the ob- 

ject is not present. This quantity is sometimes called the signal-to-noise ratio 
(SNR) for detection. Clearly, larger d’ implies better separation of the two 
distributions and hence better detectability. For the histograms shown in Fig. 
3 obtained for unconstrained reconstructions, d’ is 0.871. When the same anal- 
ysis is carried out on reconstructions employing the nonnegativity constraint, 
a value of 2.054 is obtained. We conclude that the nonnegativity constraint 
has improved detectability. As noted in Ref. [2], the detectability index based 

on the area under the receiver operating characteristic curve dA may be more 
appropriate for the binary decision task. But d’ has better statistical accuracy 
than dA and is more likely to be a continuous function of the parameters that 
can be varied in the reconstruction procedure. Thus d’ is the preferred choice 
for the purpose of optimization. 

Fig. 4 shows how two choices for optimization functions depend on X0 and 
TA for constrained ART. There is a definite minimum in these functions indicat- 
ing optimum operating points for these two parameters. However, the minima 
are at different values of these parameters. Which operating point should we 
choose? Fig. 5 shows the reconstructions obtained using the relaxation parame- 

ters for optimization with respect to 100/d’ and the rms error in the reconstruc- 

tion. There is an enormous improvement in the quality of both reconstructions 
over those shown in Fig. 2. Optimization with respect to 100/d’ appears to 
be preferable because it yields a d’ that is twice as large as the optimization 

with respect to rms error. The latter also leads to annoying streak artifacts, 
which are quite visible in a good display of the reconstruction. The same kind 
of contour plots for unconstrained ART are relatively flat and uninteresting. 

Fig. 6 shows reconstructions obtained from noisy data. Because of the large 
number of views, the data are complete. For the unconstrained and constrained 
reconstructions, d’ is found to be 1.995 and 1.825, respectively. In this case the 

nonnegativity constraint has worsened detectability, contrary to what might 
be concluded from a first glance. The CPU time required to calculate these 
detectabilities took about one hour on a VAX 8700, which is about four times 
faster than a VAX 785. 

The optimum values for X0 and TX were found for various conditions of data 
collection using a function minimizer from the NAG library1 called E04JB. This 
routine finds the parameters for the minimum of a function after many evalua- 
tions of the function. From 20 to 100 function evaluations are required for the 
cases studied here. Table 1 tabulates the results obtained with unconstrained 

‘Numerical Algorithm Group, 7 Banbury Road, Oxford OX2 6NN, UK 
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Figure 4: Contour plots of two optimization functions plotted as a function of 

the relaxation parameters & and TX used in the constrained ART reconstruction 

algorithm. The measurements consist of 12 noiseless, parallel projections spanning 

180’. The coarse sampling (10 x 10 points) of these functions, necessitated by the 

lengthy computation time required for each function evaluation, accounts for the 

scalloping effects. 



Optimization of reconstruction algorithms 

Figure 5: Optimized reconstructions of Fig. 1 from 12 noiseless parallel projections 

subtending 180’ obtained with constrained ART. The reconstruction on the top is 

obtained with Xu = 2.96 and TX = 0.975, which is the optimum for detectability. 

The reconstruction on the bottom is obtained with Xo = 3.25 and TX = 0.975, 

which produces the smallest rms difference between the reconstruction and the 

original image. Although the rms error in the reconstruction is a common measure 

for the quality of reconstruction, it yields more visible artifacts and reduces d’ from 

its optimum of 23.5 to 12.6. 
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Figure 6: Reconstructions of Fig. 1 from 100 noisy parallel projections subtcnd- 

ing 180° obtained with the ART algorithm (top) without and (bottom) with the 

nonnegativity constraint. The noise added to the projection measurements has 

an rms amplitude of 8, which is ten times the peak projection value for one of 

the low-contrast discs. These reconstructions were obtained with Xo = 0.2 and 

TX = 0.8. 
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Table 1: Summary of the effect of optimization with respect to the detectability 

index d’ on reconstructions obtained using 10 iterations of unconstrained ART. 

The optimum operating point was found by varying the parameters that control 

the relaxation factor used in the ART algorithm, Xo and TX, as discussed in the 

text. There is generally little improvement in detectability. 

Table 2: Summary of the effect of optimization with respect to the detectability 

index d’ on ART reconstructions incorporating the nonnegativity constraint. When 

the measurement geometry limits the reconstruction rather than noise in the data, 

dramatic improvement in detectability is seen to be possible. 

ART. In most cases relatively little improvement in detectability is achieved by 
optimization compared to that obtained with the nominal relaxation factors. 
In the noiseless cases, a value of unity for Xx yields essentially the same results 
as the optimized values, a choice that is in agreement with common practice. 
However, for noisy data it seems desirable for TX to be less than unity and, 

when there’ are many views, JO should be small. These choices are reasonable 
as they promote significant averaging over all the views. As a rule of thumb, for 

noisy but complete data, the relaxation factor should be approximately equal 
to the reciprocal of the number of views for the last few iterations. 

The results of optimizing constrained ART are presented in Table 2. The 
nonnegativity constraint is seen to be generally useful with the nominal re- 

laxation factors, particularly when the data are limited by the measurement 
geometry. But with optimization, huge improvements in detectability are ob- 
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tained in these cases. Very large relaxation factors are preferred, in fact much 

larger than might be expected. However, when it is realized that the nonnega- 

tivity constraint has the effect of undoing the agreement with each measurement 

that should result from an update, it seems reasonable that overrelaxation is 

needed. Neither the use of nonnegativity nor the optimization has much ben- 

efit when the data are complete but noisy. It is possible that this conclusion 

depends heavily on the type of task posed and the decision variable adopted for 

the performance of the detection task. It seems that the task of identification of 
the discs as separate entities might yield a different conculsion about the value 
of the nonnegativity constraint when the data are noisy. 

Discussion 

In some of the imaging situations studied, the use of the nonnegativity con- 

straint in ART significantly increases the detectability, of objects, especially 
when the data consist of a limited number of noiseless projections. Optimiza- 
tion is accomplished by varying the relaxation factor, both in terms of its initial 

value and the rate of its decline with iteration number. The detectability in 

the reconstructions obtained with constrained ART is dramatically enhanced 

by the optimization procedure in some cases. It is found that optimization of 

ART with respect to conventional measures of reconstruction quality, such as 
rms difference from the original image, results in reconstructions with more ar- 
tifacts and lower detectability. For unconstrained ART, little improvement was 

achieved through optimization. 
It is concluded that it is important to optimize image-reconstruction algo- 

rithms on the basis of what is most important, which can often. be defined in 
terms of a task that is to be performed using the final image. The approach 
taken here is based on a Monte Carlo simulation of the complete imaging pro- 
cess from the composition of the original scene to the final interpretation of 
the reconstructed image. This method is consistent with the assertion that an 
algorithm can only be properly evaluated by testing it on a statistically mean- 
ingful sample of trials in which all the uncontrollable variables in the problem 
are varied. This numerical simulation technique has several great advantages. 
It can be used to evaluate the net effect of complex scenes on the reconstructed 

images. It is particularly useful in situations that do not lend themselves to 

analytic analysis, as in nonlinear algorithms like constrained ART. It can opti- 
mize the performance of iterative algorithms for an arbitrary number of itera- 
tions. These issues cannot be addressed directly by theoretical approaches to 
optimization, The major disadvantage of relying on the Monte Carlo numerical 
technique is that each result applies only to the specific imaging situation tested 
and generalizations are seldom possible. 

The method for optimizing tomographic reconstruction presented here sug- 
gests a way to evaluate and optimize the design of neutron-diffraction spectrom- 
eters together with the performance of the required data-unfolding schemes. 
For a postulated mix of broad and narrow peaks that occur on a variable back- 
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ground, one could determine how well the presence of each peak is detected. To 

push the technique further, it would be possible to ascertain how well one could 

estimate the various parameters associated with each peak (amplitude, width, 
position) from the final reconstructed data. This approach to data evaluation 
can provide a firm basis upon which to make decisions about spectrometer 

design. 
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